睡眠研究必须携带与睡眠损失相关的表型和有助于精神病理学的露出机制。最常见的是,调查人员手动将多色网络分类为警惕状态,这是耗时的,需要广泛的培训,并且容易出现帧间间变异性。虽然许多作品已经基于多个EEG通道成功开发了自动化状态分类器,但是我们的目标是生产一种自动化和开放式分类器,可以基于来自啮齿动物的单个皮质脑电图(EEG)来可靠地预测警惕状态,以最大限度地减少伴随的缺点通过电线束缚小动物到计算机程序。大约427小时的连续监测的脑电图,电灰度(EMG)和活性由总数据的571小时的域专家标记。在这里,我们评估各种机器学习技术对分类10-秒钟时期的各种机器学习技术的性能,进入三个离散类中的一种:矛盾,慢波或唤醒。我们的调查包括决策树,随机森林,天真贝叶斯分类器,Logistic回归分类器和人工神经网络。这些方法达到了约74%至约96%的精度。最值得注意的是,随机森林和巢穴分别实现了95.78%和93.31%的显着准确性。在这里,我们已经示出了各种机器学习分类器的潜力,以基于单个EEG读数和单一EMG读数自动,准确地和可靠地对警惕状态进行自动。
translated by 谷歌翻译
Classically, the development of humanoid robots has been sequential and iterative. Such bottom-up design procedures rely heavily on intuition and are often biased by the designer's experience. Exploiting the non-linear coupled design space of robots is non-trivial and requires a systematic procedure for exploration. We adopt the top-down design strategy, the V-model, used in automotive and aerospace industries. Our co-design approach identifies non-intuitive designs from within the design space and obtains the maximum permissible range of the design variables as a solution space, to physically realise the obtained design. We show that by constructing the solution space, one can (1) decompose higher-level requirements onto sub-system-level requirements with tolerance, alleviating the "chicken-or-egg" problem during the design process, (2) decouple the robot's morphology from its controller, enabling greater design flexibility, (3) obtain independent sub-system level requirements, reducing the development time by parallelising the development process.
translated by 谷歌翻译
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译
We consider the problem of continually releasing an estimate of the population mean of a stream of samples that is user-level differentially private (DP). At each time instant, a user contributes a sample, and the users can arrive in arbitrary order. Until now these requirements of continual release and user-level privacy were considered in isolation. But, in practice, both these requirements come together as the users often contribute data repeatedly and multiple queries are made. We provide an algorithm that outputs a mean estimate at every time instant $t$ such that the overall release is user-level $\varepsilon$-DP and has the following error guarantee: Denoting by $M_t$ the maximum number of samples contributed by a user, as long as $\tilde{\Omega}(1/\varepsilon)$ users have $M_t/2$ samples each, the error at time $t$ is $\tilde{O}(1/\sqrt{t}+\sqrt{M}_t/t\varepsilon)$. This is a universal error guarantee which is valid for all arrival patterns of the users. Furthermore, it (almost) matches the existing lower bounds for the single-release setting at all time instants when users have contributed equal number of samples.
translated by 谷歌翻译
Nonnegative matrix factorization can be used to automatically detect topics within a corpus in an unsupervised fashion. The technique amounts to an approximation of a nonnegative matrix as the product of two nonnegative matrices of lower rank. In this paper, we show this factorization can be combined with regression on a continuous response variable. In practice, the method performs better than regression done after topics are identified and retrains interpretability.
translated by 谷歌翻译
Despite the remarkable success achieved by graph convolutional networks for functional brain activity analysis, the heterogeneity of functional patterns and the scarcity of imaging data still pose challenges in many tasks. Transferring knowledge from a source domain with abundant training data to a target domain is effective for improving representation learning on scarce training data. However, traditional transfer learning methods often fail to generalize the pre-trained knowledge to the target task due to domain discrepancy. Self-supervised learning on graphs can increase the generalizability of graph features since self-supervision concentrates on inherent graph properties that are not limited to a particular supervised task. We propose a novel knowledge transfer strategy by integrating meta-learning with self-supervised learning to deal with the heterogeneity and scarcity of fMRI data. Specifically, we perform a self-supervised task on the source domain and apply meta-learning, which strongly improves the generalizability of the model using the bi-level optimization, to transfer the self-supervised knowledge to the target domain. Through experiments on a neurological disorder classification task, we demonstrate that the proposed strategy significantly improves target task performance by increasing the generalizability and transferability of graph-based knowledge.
translated by 谷歌翻译
One of the major errors affecting GNSS signals in urban canyons is GNSS multipath error. In this work, we develop a Gazebo plugin which utilizes a ray tracing technique to account for multipath effects in a virtual urban canyon environment using virtual satellites. This software plugin balances accuracy and computational complexity to run the simulation in real-time for both software-in-the-loop (SITL) and hardware-in-the-loop (HITL) testing. We also construct a 3D virtual environment of Hong Kong and compare the results from our plugin with the GNSS data in the publicly available Urban-Nav dataset, to validate the efficacy of the proposed Gazebo Plugin. The plugin is openly available to all the researchers in the robotics community. https://github.com/kpant14/multipath_sim
translated by 谷歌翻译
In this work, we used a semi-supervised learning method to train deep learning model that can segment the brain MRI images. The semi-supervised model uses less labeled data, and the performance is competitive with the supervised model with full labeled data. This framework could reduce the cost of labeling MRI images. We also introduced robust loss to reduce the noise effects of inaccurate labels generated in semi-supervised learning.
translated by 谷歌翻译
Consider a scenario in one-shot query-guided object localization where neither an image of the object nor the object category name is available as a query. In such a scenario, a hand-drawn sketch of the object could be a choice for a query. However, hand-drawn crude sketches alone, when used as queries, might be ambiguous for object localization, e.g., a sketch of a laptop could be confused for a sofa. On the other hand, a linguistic definition of the category, e.g., a small portable computer small enough to use in your lap" along with the sketch query, gives better visual and semantic cues for object localization. In this work, we present a multimodal query-guided object localization approach under the challenging open-set setting. In particular, we use queries from two modalities, namely, hand-drawn sketch and description of the object (also known as gloss), to perform object localization. Multimodal query-guided object localization is a challenging task, especially when a large domain gap exists between the queries and the natural images, as well as due to the challenge of combining the complementary and minimal information present across the queries. For example, hand-drawn crude sketches contain abstract shape information of an object, while the text descriptions often capture partial semantic information about a given object category. To address the aforementioned challenges, we present a novel cross-modal attention scheme that guides the region proposal network to generate object proposals relevant to the input queries and a novel orthogonal projection-based proposal scoring technique that scores each proposal with respect to the queries, thereby yielding the final localization results. ...
translated by 谷歌翻译
We seek to impose linear, equality constraints in feedforward neural networks. As top layer predictors are usually nonlinear, this is a difficult task if we seek to deploy standard convex optimization methods and strong duality. To overcome this, we introduce a new saddle-point Lagrangian with auxiliary predictor variables on which constraints are imposed. Elimination of the auxiliary variables leads to a dual minimization problem on the Lagrange multipliers introduced to satisfy the linear constraints. This minimization problem is combined with the standard learning problem on the weight matrices. From this theoretical line of development, we obtain the surprising interpretation of Lagrange parameters as additional, penultimate layer hidden units with fixed weights stemming from the constraints. Consequently, standard minimization approaches can be used despite the inclusion of Lagrange parameters -- a very satisfying, albeit unexpected, discovery. Examples ranging from multi-label classification to constrained autoencoders are envisaged in the future.
translated by 谷歌翻译